Teleportation fidelity the big winner in the quantum lottery

Sophie Zhao

by Phil Dooley

Running your quantum system as a lottery turns out to be a way to improve the transmission of data via quantum teleportation.

Researchers at the Research School of Physics used a probabilistic twist to develop a new transmission protocol that set a new record in data transmission: 92 percent fidelity, which more than halves the loss in previous experiments.

The new protocol will enable encrypted data, for example in finance or military settings, to be sent with higher accuracy.

“Our protocol improves the capability of the quantum teleporter to protect fragile quantum states during long-distance transmission, making the system resilient to noise and loss,” said lead researcher Dr Sophie Jie Zhao, from the Department of Quantum Sciences and the CQC2T ARC Centre of Excellence, who is the lead author in the team’s publication in Nature Communications.

Quantum teleportation is already being used in encrypted networks. It allows information to be shared instantly between linked, or entangled, quantum objects. 

However, the entanglement between the objects can easily be destroyed by interactions with external entities. This at once makes quantum teleportation extremely secure – as any tampering instantly destroys the data transfer – but also very prone to degradation through noise due to environmental interactions.

With entanglement degradation limiting their existing teleportation’s fidelity and distance, the team set their mind to improving the teleportation efficacy by leveraging the paradoxes of the Heisenberg Uncertainty Principle.

In these experiments, the ends of the teleportation link are two photons from the same source, which creates entanglement in their properties. These photons are sent to two separate locations, untouched, which leaves their properties unknown, and able to appear in any possible state.

The signaller then gets the information to be teleported to interact with one of the photons, and measures the photon’s properties – in this case amplitude and phase – making the photon choose a state. This causes the other photon (the receiver) to instantly choose its state as well. Because the two photons are linked, information about the signaller’s experiment can be deduced by the receiver.

This deduction relies on the sender separately conveying to the receiver the result of the experiment. This does not reveal the teleported information, as it is the result of the mashup between that information and the original photon. However, this result acts as a key that allows the receiver to work backwards from the result at their end and disentangle the teleported information.

It is crucial that the sender can’t know what the teleported information is – that would constitute a measurement and collapse the quantum information, said University of Queensland researcher and CQC2T member Professor Tim Ralph.

“The information needs to be hidden in uncertainty so the sender doesn’t know exactly what they are sending. The more they know about the signal, the more they destroy it,” he said.

Quantum uncertainty resulting from the mixing of possible states can be cancelled out with the key, however uncertainty resulting from noise from entanglement degradation is harder to cancel out.

To filter this noise the team leveraged the fact that the mixed states have a Gaussian distribution. They realised that a lottery, a protocol in which a subset of the measurements was selected randomly in a way that actually narrowed the Gaussian distribution, while other measurements were randomly discarded, could help filter out noise.

“Adding an element of chance to our protocol has the effect of distilling the quantum information,” Dr Zhao said.

“The post-selection effectively biases the Gaussian distribution in favour of high-amplitude outcomes than outcomes close to the origin of phase space, hence acting as an amplifier. Since this amplification is noiseless and takes over from part of the amplification applied by the receiver in standard teleportation protocols, the teleported states suffer less from the noise added due to imperfect entanglement.”

An interesting quirk of the system is that the balance between the probabilistic factor and the noise reduction can be tuned. By simply reducing the probability of measurements being selected in the protocol the teleportation fidelity can be increased.

To achieve their record 92 percent fidelity the team used a success rate of less than one in a hundred thousand, sampling the system for around two hours.

In the new protocol, the success of the teleportation relies on the stability of the laser system, instead of being limited by environmental noise, Dr Zhao said.

“You can always get better fidelity if you are willing to sacrifice your success rate. But then you need a longer sampling time.

“If the system were stable enough to allow us to sample for say, 20 hours, then I believe we could go above 95 percent,” she said.

Originally published on ANU Physics website

Continue Reading Teleportation fidelity the big winner in the quantum lottery

Schrodinger’s Cat – the video is now live!

Many of you have heard me play this song live, and I’ve been planning to make a video for it.  The question was, how? Enter Wasabi the WonderCat, who offered to star in the video, some gentle impulse from Dr Kip Stewart, and I had inspiration.

Finally after 10 months of hard work teaching myself to animate, here it is!

The song was born as I wondered about how Schrodinger’s cat felt about being in a box for more than 80 years. You see, he was first put there to prove a point.

The originators of the Copenhagen Interpretation, Niels Bohr and Werner
Heisenberg proposed that reality as we knew it didn’t exist, things were
blurred across multiple states, until a measurement was made.

On the other hand, Einstein and Schrodinger found this preposterous, and
to illustrate came up with the idea of the cat in the box. 

While the fame of Schrodinger’s Cat’s has spread, it didn’t really settle the debate.

I want to know, what does the cat think, being in the box for nearly a century? Surely, it’s the dogs’ turn now!

Continue Reading Schrodinger’s Cat – the video is now live!

Quantum pancake reveals clues to better electronics

First published on Cosmos Magazine site, 25/9/18

An experiment with a cloud of ultracold atoms squashed into a quantum pancake has revealed never-before seen quantum effects that could lead to more efficient electronics, including high temperature superconductors.

A team at Swinburne University in Australia observed a quantum anomaly in lithium-6 gas cooled to a few billionths of a degree above absolute zero and squashed between two laser beams.

“We’re seeing quantum mechanics that’s visible on a macroscopic scale – a large collection of tens of thousands of atoms all behaving quantum mechanically,” says project leader Chris Vale, a researcher at Swinburne’s Centre of Excellence in Future Low-Energy Electronics Technologies.

The team’s work is published in the journal Physical Review Letters, concurrently with that of a team from Heidelberg in Germany which reported similar results.

The Australian team used laser beams focused into a flat plane to create a pancake of lithium-6 gas with a radius of 200 microns and the thickness of a single atom – around 500 nanometers. Then the researchers compressed the gas slightly with a magnetic field, to set it vibrating. Shining another laser from below, they measured the vibration frequency of the gas cloud by watching the shadow of the cloud on a camera.

The frequency of this radial vibration, known as a breathing mode, gave the telltale sign of a quantum anomaly: it vibrated 2.5% faster than the classical model predicted.

Symmetry in the classical model dictates that gas properties such as pressure and density should scale in a straightforward way as the size of the gas cloud oscillates. But the full quantum analysis predicts a higher frequency: the classical theory breaks down because of strong interactions between the gas particles.

To further test the model, the scientists jammed more atoms between the laser beams, and turned the pancake from a two-dimensional crepe into a fatter flapjack. Its three-dimensional nature conformed to the classical model.

Vale says the interactions between the gas particles in the quantum crepe was mid-way between two well-known states of matter: Bose-Einstein condensates, in which atoms in a gas interact strongly and exhibit uniform quantum behaviour, and low temperature superconductivity, in which electrons in a material form weakly-bound pairs known as Cooper pairs that can carry electricity through a material with no energy loss.

“There’s a continuous crossover between these two limits, what happens in the middle is not well understood,” he says

“There’s a lot of interesting physics there. For example, this is where we find the highest superfluid transition temperatures, in the intermediate zone where the binding energy of the fermion pairs is similar to the natural energy scale for the system, the Fermi energy.”

By studying a two-dimensional system, Vale hopes to spark developments of new materials for the electronics industry, for example topological insulators or high-temperature superconductors.

In the current highest-temperature superconductors, ceramics based on copper oxide, the superconducting current is carried in two-dimensional layers within the material – although exactly how the electrons pair up is not fully understood.

The power of the experiments at Swinburne is their simplicity, says Vale – the microscopic properties of the lithium atoms and their interactions are precisely known, which is not always possible in more complex materials such as solids.

“In a sense, our cold atoms are acting as a quantum simulator, where we can test models of many-body physics with precisely known inputs that can be difficult to pin down in other materials,” he says.

Continue Reading Quantum pancake reveals clues to better electronics

End of content

No more pages to load