A new spin on data storage

Seems physicists are inventing particles faster’n I can write about em. Who ever knew you could call a twisted magnetic field a particle?

First published here: http://www.research.a-star.edu.sg/research/7691/a-new-spin-on-data-storage, 8 May 2017.


Magnetic field patterns in two types of skyrmions (Wikimedia)

Study into spirals of magnetic spin showcases potential of layered materials for future data storage

Tiny spirals of magnetism called skyrmions could be used as ultrahigh density energy-efficient data carriers.

Jarvis Loh, Gan Chee Kwan and Khoo Khoong Hong from the A*STAR Institute of High Performance Computing have modeled these minute spin spirals in nanoscopic crystal layers. They found that alternating layers of manganese silicide (MnSi) and cobalt silicide (CoSi) forms a promising material architecture.

“Skyrmions are nanosized entities, only tens of nanometers, so they hold the promise of higher storage density than the current technology,” said Gan.

Storage based on skyrmions would represent binary data such as ‘1’s and ‘0’s as clockwise and anticlockwise spin spirals, respectively. Skyrmions can improve energy efficiency as they can be created and manipulated with currents significantly smaller than those required for conventional magnetic hard disk technology.

Skyrmions had been experimentally observed in manganese silicide, prompting the team to explore simulations of manganese silicide in its pristine form and in combination with similar materials.

The team selected cobalt silicide because cobalt sits close to manganese in the periodic table, and its similar lattice characteristics mean it should combine well with manganese silicide. Cobalt also has strong magnetic properties — it is ferromagnetic.

The team’s simulations showed that coupling cobalt silicide to manganese silicide enables the spin spirals in manganese silicide to be engineered. “What’s interesting is that we can now vary the size of skyrmions in an easy and elegant way,” Loh said.

In the skyrmion’s center the magnetic spin of the atoms is flipped 180 degrees relative to the spin on its outside edge; between the edge and the center the spins progressively tilt between the two extremes. Critical in the size of skyrmions is the ability of the material to support high relative tilt between neighboring atoms in the lattice, which enables the skyrmion to be packed into a smaller spiral.

The team found that adding cobalt silicide layers to the manganese silicide layers increased the possible relative tilt. However there is an upper limit — for cobalt silicide layers double the thickness of the manganese silicide, the material ceased to support skyrmions and transitioned to a more conventional ferromagnetic behavior.

One of the attractions of skyrmions as a data storage medium is their robustness, says Loh. “Unlike current magnetic storage, skyrmions are resistant to defects in the lattice. They are topologically protected.”

The team plans to apply their successful approach to other potential architectures, such as nanowires.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing.


  1. Loh, G. C., Khoo, K. H. & Gan, C. K. Helimagnetic order in bulk MnSi and CoSi/MnSi superlattices Journal of Magnetism and Magnetic Materials 421, 31–38 (2017). | Article

Silicon brings more colour to holograms

Silicon holograms harness the full visible spectrum to bring holographic projections one step closer

We can’t yet send holographic videos to Obi-Wan Kenobi on our droid, but A*STAR researchers have got us a little bit closer by creating holograms from an array of silicon structures that work throughout the visible spectrum1.

Many recent advances in hologram technology use reflected light to form an image; however the hologram made by Dong Zhaogang and Joel Yang from the A*STAR Institute of Materials Research and Engineering uses transmitted light. This means the image is not muddled up with the light source.

The team demonstrated the hologram of three flat images at wavelengths ranging from blue (480 nanometers) to red (680 nanometers). The images appeared in planes 50 microns apart for red and higher spacings for shorter wavelengths.

“In principle, it can be tuned to any wavelength,” says Yang.

Holograms can record three-dimensional images, which mean they can store large amounts of information in increasingly thin layers.

Recently, holograms that are mere hundredths of the thickness of a human hair have been made from metal deposited onto materials such as silicon. The holograms are created by nanoscale patterns of metal that generate electromagnetic waves that travel at the metal–silicon interface; a field called plasmonics.

Silicon holograms are slightly thicker than the metal-based ones, but have the advantage of being broadband. Plasmonic holograms only operate in the red wavelengths because they undergo strong absorption at blue wavelengths.

A disadvantage of the silicon holograms is their poor efficiency at only three per cent; however Dong estimates this could easily be tripled.

“The losses can be lowered by optimizing the growth method to grow polycrystalline silicon instead of amorphous silicon,” he says.

The hologram is an array of tiny silicon skyscrapers, 370 nanometers tall with footprints 190 nanometers by 100 nanometers. Unlike a city grid, however, the tiny towers are not laid out in neat squares but at varying angles.

The hologram operates with circularly polarized light, and the information is encoded on to the light beam by the varied angles of the skyscrapers. These alter the phase of the transmitted light through the ‘Pancharatnam–Berry effect’.

“What’s interesting about this hologram is that it controls only the phase of the light by varying the orientation of the silicon nanostructures. The amplitude is the same everywhere; in principle you can get a lot of light transmitted,” says Yang.

The A*STAR researchers focused on nanofabrication and measurements and collaborated with Cheng-Wei Qiu from National University of Singapore, whose team specializes in hologram design.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering and the Data Storage Institute


  1. Huang, K., Dong, Z., Mei, S., Zhang, L., Liu, Y. et al. Silicon multi-meta-holograms for the broadband visible light. Laser & Photonics Reviews 10, 500–509 (2016)| Article


Original on A*STAR journal website, published by Nature Group.

How twisting a belt explains the Universe

Quantum physics is all about the simplest things in the universe. Matter – electrons and quarks (which make up neutrons and protons), and interactions – photons, forces etc.

The difference between the two is a simple rotation. It’s secret quantum mechanics knowledge, says head of ANU Dept of Quantum Physics, Professor Craig Savage.

Here he is proving it:

Filmed at Physics in the Pub ACT, 2016, August 17 at Smiths Alternative Bookshop